Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation.
نویسندگان
چکیده
Autophagy is a conserved cellular process to degrade and recycle cytoplasmic components. During autophagy, lysosomes fuse with an autophagosome to form an autolysosome. Sequestered components are degraded by lysosomal hydrolases and presumably released into the cytosol by lysosomal efflux permeases. Following starvation-induced autophagy, lysosome homeostasis is restored by autophagic lysosome reformation (ALR) requiring activation of the "target of rapamycin" (TOR) kinase. Spinster (Spin) encodes a putative lysosomal efflux permease with the hallmarks of a sugar transporter. Drosophila spin mutants accumulate lysosomal carbohydrates and enlarged lysosomes. Here we show that defects in spin lead to the accumulation of enlarged autolysosomes. We find that spin is essential for mTOR reactivation and lysosome reformation following prolonged starvation. Further, we demonstrate that the sugar transporter activity of Spin is essential for ALR.
منابع مشابه
Scissors for autolysosome tubules.
Autophagic lysosome reformation (ALR) is a cellular process in which lysosomes are reformed through scission of protolysosomes from tubular structures extruded from autolysosomes. Despite recent progress, the molecular mechanism of ALR is far from clear. A paper in this issue of The EMBO Journal has identified lysosome-localized PI(3)P, which is generated by the VPS34–UVRAG complex in an mTOR-d...
متن کاملExpression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids
SQSTM1/p62 (sequestosome 1) is a multifunctional signaling molecule, involved in a variety of cellular pathways. SQSTM1 is one of the best-known autophagic substrates, and is therefore widely used as an indicator of autophagic degradation. Here we report that the expression level of SQSTM1 can be restored during prolonged starvation. Upon starvation, SQSTM1 is initially degraded by autophagy. H...
متن کاملDevelopment of Research into Autophagic Lysosome Reformation
Autophagy is a lysosome-dependent degradation process that is essential for maintaining cellular homeostasis. In recent years, more studies have focused on the late stages of autophagy. Our group discovered and studied the terminal step of autophagy, namely autophagic lysosome reformation (ALR). ALR is the process that regenerates functional lysosomes from autolysosomes, thus maintaining lysoso...
متن کاملAutophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease
Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional ...
متن کاملA lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
The lysosome plays a key role in cellular homeostasis by controlling both cellular clearance and energy production to respond to environmental cues. However, the mechanisms mediating lysosomal adaptation are largely unknown. Here, we show that the Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, colocalizes with master growth regulator mTOR complex 1 (mTORC1) on the l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 19 شماره
صفحات -
تاریخ انتشار 2011